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Target patterns arising from the short-wave instability in near-critical regimes
of reaction-diffusion systems

Arkady B. Rovinsky,* Anatol M. Zhabotinsky,† and Irving R. Epstein‡

Department of Chemistry and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02254-91
~Received 25 September 1996; revised manuscript received 4 February 1997!

The supercritical short-wave oscillatory bifurcation is studied in finite systems using the amplitude
~Ginzburg-Landau! equation. Numerical simulations show that a zero-flux boundary stabilizes sources of target
patterns. As a result, stable sources attached to the boundary can exist at small overcriticality, under the
condition of convective instability of the homogeneous steady state. Oscillating target patterns and alternating
wave packets are formed if the coupling between left and right propagating waves is strong.
@S1063-651X~97!01807-2#

PACS number~s!: 03.40.Kf, 82.20.Mj, 42.25.Gy
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I. INTRODUCTION

In extended systems, three types of simple instabilities
a spatially uniform steady state are responsible for a var
of patterns which can be classified as follows:~1! oscillatory
in time and uniform in space,~2! stationary in time and pe
riodic in space, and~3! oscillatory in space and time@1#. For
reaction-diffusion systems, all three instabilities were stud
by Turing @2#. Of these three, the oscillatory instability
finite wave number, i.e., the short-wave instability, is t
least studied.

The short-wave instability has been found in binary flu
convection and in electroconvection in liquid crystals@1#.
Recently, standing waves and other spatiotemporal patt
connected with this type of instability have been found
oscillating heterogeneous reactions when diffusion of the
tocatalyst~activator! is supplemented by a global negativ
feedback. Jakubithet al. @3# found standing concentratio
waves in carbon monoxide oxidation on the surface of a
monocrystal. These standing waves were obtained in a m
ematical model that took into account the surface reactio
surface diffusion of the autocatalyst, and global coupl
through the gas phase@4#. Standing waves were observe
during electrochemical dissolution of nickel@5#, and various
relevant patterns were found during the atmospheric ox
tion of hydrogen, propylene, methylamine, and ammonia
heated metallic wires and ribbons@6#. Middya et al. per-
formed systematic simulations with simple models of rela
ation oscillators supplemented with diffusion and glob
negative feedback. They found various types of stand
waves, target patterns, and some more complicated pat
@7#.

Recently, a simple reaction-diffusion model has been
veloped that contains a relatively large domain of the wa
instability. One-dimensional simulations show that the mo
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can generate traveling and standing waves, modula
waves, alternating waves on rings, asymmetric stand
traveling wave patterns, and target patterns, as well as fu
and splitting of defects@8#.

Target patterns seem to be the most important of the
terns that can be generated by the short-wave instabilit
reaction-diffusion systems, because spontaneous desyn
nization of bulk oscillations in real reaction-diffusion sy
tems usually begins with the emergence of target patte
@9–11#. While in experiments target patterns often arise fro
local inhomogeneities in system parameters@12–14# ~e.g.,
from dust particles or impurities that locally change react
rates!, there is a good deal of evidence that these patterns
also emerge from fluctuations of the concentrations that
dynamic variables of the system@11,15#.

The target patterns found in the above models eme
rather far from the onset of the short-wave instability. T
find general conditions for a generation of target patte
near the onset, one can analyze the corresponding ampli
i.e., the complex Ginzburg-Landau, equations~GLE!.

Ȧ5eA2auAu2A2buBu2A2vAx1dAxx , ~1!

Ḃ5eB2auBu2B2buAu2B1vBx1dBxx , ~2!

whereA is the complex amplitude of the mode traveling
the right,B is that of the mode traveling to the left, ande is
the overcriticality parameter;v is the group velocity, which
is a real number.

Target pattern formation in coupled complex GLE h
been studied by several authors@16–22#. However, these
studies do not consider the effects of boundary conditio
which are significant in experimental reaction-diffusion sy
tems. Livshits@16# and Coullet and co-workers@17,21# con-
sidered a spatially infinite system, so that boundary effe
were irrelevant. In the context of reaction-diffusion system
their results imply that stable target patterns can only e
for large overcriticality (e.v2Re(d)/4udu2, which is the
condition of absolute instability@23#!, when the validity of
the Ginzburg-Landau description has not been rigorou
2412 © 1997 The American Physical Society
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56 2413TARGET PATTERNS ARISING FROM THE SHORT-WAVE . . .
proved. Cross@18–20# performed an extensive comput
study of the GLE with real coefficients in finite systems w
no-slip boundary conditions. While these calculations
relevant to convection problems, a similar approach
reaction-diffusion systems normally involves complex GL
with zero-flux boundary conditions. Therefore, the proble
of whether the short-wave instability can underlie the mec
nism of target patterns in reaction-diffusion systems still
ists.

Here we perform a numerical study of the oscillatory Tu
ing bifurcation in the Ginzburg-Landau approximation wit
out restrictions on the coefficients of the corresponding g
eralized GLE. Systems with periodic and zero-flux bound
conditions are considered. In this approximation, it is th
conditions—the absence of bulk flow and of matter excha
through the walls—that correspond to specific features of
original reaction-diffusion systems. We show that, within
certain range of the mode coupling parameter, stable sta
ary sources of target patterns can exist in the system at s
overcriticalities if they are attached to zero-flux boundari
These structures become oscillating when the coupling
tween the left-going and right-going waves increases. W
still stronger coupling, this oscillation may evolve into a r
gime of alternating wave packets emitted by the oppo
boundaries. In contrast, free-standing sources are only fo
at a sufficiently large overcriticality, when the instability o
the uniform steady state is absolute, in agreement with
argument of Coullet, Frisch, and Plaza@21# for infinite sys-
tems.

In Sec. II we discuss GLE for short-wave bifurcatio
Section III describes the numerical procedure employed
the simulations. Sections IV and V treat the cases of perio
boundary conditions and zero-flux boundary conditions,
spectively. After Sec. VI, the Appendix gives a derivation
boundary conditions for the GLE corresponding to zero-fl
boundary conditions for the original reaction-diffusion sy
tem.

II. SCALING GINZBURG-LANDAU EQUATION
FOR THE OSCILLATORY TURING BIFURCATION

Here we make Eqs.~1! and ~2! dimensionless by using
scales different from that of@1,16–19#. In the generic case
v5O(kcrD), wherekcr is the wave number of the critica
mode, andD is a ‘‘characteristic’’ diffusion coefficient. Both
Re(d) and Im(d)5O(D) After the rescaling: t°t/e,
A°@e/Re(a)#1/2A, B°@e/Re(a)#1/2B, x°(v/e)x, Eqs.~1!
and ~2! become

Ȧ5A2~11 ia!uAu2A2g~11 ib!uBu2A2Ax

1d~11 id8!Axx , ~3!

Ḃ5B2~11 ia!uBu2B2g~11 ib!uAu2B1Bx

1d~11 id8!Bxx , ~4!

where a5Im(a)/Re(a), g5Re(b)/Re(a), b5Im(b)/
Re(b), d85Im(d)/Re(d), and d5e Re(d)/v2. Note that
e
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d5O(e/kcr
2 D), and in the generic casekcr

2 D5O(1). Thus
d5O(e), and we treat it as an overcriticality parameter.

In an infinite, or periodic, system two types of solutio
are known: standing waves~if 21,g,1), and traveling
waves~if g.1). Since sources of traveling waves are t
focus of the present work, we perform simulations of E
~3! and ~4! for g.1, outside the domain of the Benjamin
Feir instability @24# (11ad8.0).

III. NUMERICAL PROCEDURES

Since the complex ODEs~3! and ~4! represent an ideally
‘‘soft’’ system ~having only one time scale!, the stability
requirements for the numerical integration are not very
strictive. Therefore, the equations were integrated with
first order Euler technique. Double precision complex ari
metic was used. The time and space discretizations were
sen such that their further refinement did not improve
results significantly. The time step was varied within the
terval 1–531024 and the number of spatial grid points va
ied from 400 to 800. Two kinds of initial conditions wer
used: ~a! A50.005@11 iR1(x)#, B50.09@11 iR2(x)# for
x,x0, and A50.1@11 iR1(x)#, B50.001@11 iR2(x)# for
x.x0, whereRj is a random number normally distributed
the interval (0,1);x0 is the initial position of the source;~b!
A50.1@R1(x)1 iR2(x)#, B50.1@R3(x)1 iR4(x)#, 0,x
,L. The ~b! type initial conditions were only used for sys
tems of lengthL<10, where no free-standing sources we
found.

IV. PERIODIC BOUNDARY CONDITIONS

For d,dcr (dcr50.2 for our parameters! the solution al-
ways converges to a homogeneous traveling wave. Stat
ary target patterns exist ifd>dcr and the system is long
enough~Fig. 1!. Figure 2 shows the domain of target patter

FIG. 1. A stationary target pattern in a system with period
boundary conditions. The solid line is the stationary envelope of
amplitude of the rightward traveling wave, and the dashed line
that of the wave traveling leftward. The crossover at distance'10
is a sink and that at'23 is a source. Parameters:a50.5,b50.25,
d850.5, g54, andd50.2. The units of both axes are dimensio
less.
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2414 56ROVINSKY, ZHABOTINSKY, AND EPSTEIN
in the g-L plane for the case of a single target pattern~a
‘‘source’’ and a ‘‘sink’’! present in the system. This figur
suggests the existence of a critical length above which
system can support free-standing pacemakers. More than
stable target pattern can be found in a sufficiently long s
tem ~Fig. 3!.

V. ZERO-FLUX BOUNDARY CONDITIONS

Zero-flux boundary conditions imply reflection symmet
with respect to the boundary. Stationary sources and s
also possess reflection symmetry. Therefore, if a system
a stationary source and/or sink is cut in two at the point
reflection symmetry and the zero-flux condition is impos
at the new edge, the new ‘‘half’’ of the system should s
admit the corresponding half of the originally symmetric s
lution. Hence, if a source or sink can exist within a system
should also exist at the zero-flux boundary. However, ze

FIG. 2. The domain of stationary target patterns in a sys
with periodic boundary conditions. Solid line and diamond
d50.25, dashed line and circles:d50.2. Other parameters are as
Fig. 1.

FIG. 3. Two stationary target patterns in a longer system w
periodic boundary conditions. Parameters are as in Fig. 1.
e
ne
-

ks
th
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flux boundary conditions impose the reflection symme
constraint not only on the solutions but on possible pertur
tions as well. Therefore, solutions in a system with zero-fl
boundaries are subject to a narrower class of possible pe
bations, in comparison with those in infinite or periodic sy
tems, and their stability domain may expand as a result.
this reason, one can anticipate stability of sources attache
a zero-flux wall even ford,dcr . Our simulations described
below confirm this conjecture.

The original zero-flux boundary conditions for th
reaction-diffusion equations result in the following bounda
conditions for the coupled GLE~see the Appendix!:

@]xA~x,t !1]xB~x,t !#x50,L50, ~5!

@A~x,t !2B~x,t !#x50,L50. ~6!

As in the case of periodic boundary conditions, station
free-standing sources can be found in a sufficiently long s
tem ~Fig. 4! for d0>dcr . The domain of their existence~Fig.
5! differs insignificantly from that found in the precedin
section. Even in a long system, a free-standing source ca
stable only far enough from the boundary: otherwise it dr
and eventually attaches to the boundary~Fig. 6!. For shorter
systems (L<15 in our simulations! the sources and sinks ca
only exist if they are attached to the boundaries. Figur
illustrates a typical solution when calculations start from s
tially asymmetric~e.g., random! initial conditions.

While we have found stationary free-standing sourc
only under the conditions of absolute instabilityd>dcr ,
stable sources at the boundaries can exist for smalld ~i.e., for
small overcriticality and under the condition of convecti
instability! if the coupling parameterg is in the range 1–1.6
see Fig. 8. In a short system (L;10) a target pattern extend
over the entire system, with the source attached to
boundary and the sink attached to the other. In a longer
tem, each boundary may become a source, with the
settling in between~Fig. 9!. These results imply that a zero
flux boundary, such as a wall or a dust particle, may beco
a source even at a very small overcriticality.

:

h

FIG. 4. A stationary target pattern in a system with zero-fl
boundary conditions. Parameters:a50.5, b50.25, g52.0,
d850.5, d50.2. The units of both axes are dimensionless.
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56 2415TARGET PATTERNS ARISING FROM THE SHORT-WAVE . . .
When g exceeds a certain threshold (g.g0'1.7 in our
case! andd,dcr , sources at the boundaries become osci
tory ~Figs. 8 and 10!. For smalld and large enoughg the
solution takes a form of alternating wave packets, see
11.

VI. DISCUSSION

As mentioned, Eqs.~3! and~4! have been considered in
number of works@16–22#. However, in Ref.@16# the diffu-
sion term was completely neglected, while in Refs.@17–22#
it was taken to be of the same order of magnitude as
other terms. Moreover, in the fluid dynamics context, t
numerical simulations in Ref.@18–20# were performed with

FIG. 5. The domain of stationary free-standing target pattern
a system with zero-flux boundary conditions is above the solid l
The region between the solid and dashed lines is the domai
stationary sources attached to the boundary. There are no so
below the dashed line. Parameters are as in Fig. 4.

FIG. 6. Drift of a source toward a boundary when its initi
distance from the boundary is 1/5 of the system length. Sou
located at a distance.L/3 from the boundaries remain stable in th
case. The gray levels represent the value ofuAu1uBu, with the dark
corresponding to a low value, and the light to a high value. Par
eters are as in Fig. 4 except forL550.
-

g.

e
e

the real valued equations. Each of these cases would co
spond to some type of degeneracy when taken in the con
of reaction-diffusion systems.

We consider here Eqs.~3! and ~4! without these restric-
tions. For this reason, to obtain Eq.~2! we employ a spatial
scaling different from that used in Refs.@1,17–21#: we use
the ‘‘convective length’’l c5v/e as a scaling parameter in
stead of the ‘‘diffusion length’’l d5@Re(d)/e#1/2. While both
scales are of the same order of magnitude in the above
erences, since vanishing group velocities are considere
the context of the fluid convection problemv5O(e1/2), only
the ‘‘convective length’’ is justified at finite group velocities
which is the generic case in reaction-diffusion systems.

Solutions that correspond to one-dimensional target p
terns are of special interest here. We have shown that a z
flux boundary may be a source of target patterns at v
small overcriticality. While it was previously thought that a
inhomogeneity may become a nucleus of a target pattern

in
.
of
ces

es

-

FIG. 7. A stable source and a sink attached to the zero-
boundaries. Parameters are as in Fig. 4, except ford50.3 andg54.

FIG. 8. The domains of stationary, oscillating, and alternat
sources attached to the boundary. The area between the dashe
dotted lines is a domain of complex alternating patterns. Parame
are as in Fig. 4,L510.
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2416 56ROVINSKY, ZHABOTINSKY, AND EPSTEIN
appropriately changes the local kinetic parameters of the
tem @12–14#, our work shows that ‘‘neutral’’ walls or dus
particles may also be pacemakers in the case of the osc
tory Turing bifurcation in a reaction-diffusion system.
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FIG. 9. Stationary sources attached to zero-flux boundaries
d,dcr . Parameters:a50.5, b50.25, g51.3, d850.5, and
d50.05.

FIG. 10. An oscillating source in a system with zero-flux boun
aries. The gray level represent the value ofuAu, i.e., the amplitude
of the wave traveling to the right, with the dark corresponding t
low value, and the light to a high value. Parameters are as in Fi
except ford50.1 andL510.
s-

la-

l

APPENDIX

To obtain the boundary conditions for the complex amp
tudesA andB one has to recall how these amplitude relate
the solutions of the original reaction-diffusion system. Co
sider the reaction-diffusion system

Ẋ5f„X)1DDX, ~A1!

and suppose that it has a homogeneous solutionX5X0. Lin-
earization of Eq.~A1! nearX0 yields

ẋ5Ax1DDx, ~A2!

where x5X2X0, f(X0)50, and A05(]f/]x)X5X0
is the

Jacobian matrix. We also assume that there is a critical w
numberkcr , such that forx5xkcr

exp(ikcrr) there is a pair,

l1,256 iv, of purely imaginary eigenvalues of the matr
A5A02kcr

2 D, while for kÞkcr all the real parts of eigenval
ues are negative. Then the inhomogeneous solution is so
in the form

x5A~r ,t !exp@ i ~vt2kcrr !#U1B~r ,t !

3exp@ i ~vt1kcrr !#U1 Ā~r ,t !

3exp@2 i ~vt2kcrr !#Ū1 B̄~r ,t !

3exp@2 i ~vt1kcrr !#Ū, ~A3!

where U is the right eigenvector ofA corresponding to
l5 iv, andA(r ,t) andB(r ,t) are the slowly varying ampli-
tudes described by Eqs.~3! and ~4!. The zero-flux boundary
condition (]x/]r ) r 5050 then reduces to

05F]A~0,t !

]r
2 ikcrA~0,t !1

]B~0,t !

]r
1 ikcrB~0,t !G

3exp~ ivt !U1F ] Ā~0,t !

]r
2 ikcrĀ~0,t !

or

-

a
4,

FIG. 11. Alternating wave packets in a system with zero-fl
boundaries. The gray levels represent the value ofuAu1uBu, i.e., the
amplitudes of the waves traveling to the right and to the left, w
the dark corresponding to a low value, and the light to a high va
In these calculations when one of the amplitudes was high, the o
was near zero. Parameters are as in Fig. 4, except ford50.005,
g510, andL510.
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1
] B̄~0,t !

]r
1 ikcrB̄~0,t !Gexp~2 ivt !Ū, ~A4!

which, after multiplying from the left by the left eigenvecto
U1, becomes

]A~0,t !

]r
1

]B~0,t !

]r
2 ikcr@A~0,t !2B~0,t !#50. ~A5!

The fact thatA(r ,t) andB(r ,t) are slowly varying functions
of the spatial variable can be expressed asA5A(e1/2r ,t),
B5B(e1/2r ,t). Then Eq.~A5! turns into
n

a-

ys
.
.

J.

.

e1/2@]jA~0,t !1]jB~0,t !#2 ikcr@A~0,t !2B~0,t !#50,
~A6!

wherej5e1/2r . The requirement that the terms of differe
order ine should balance separately finally yields the boun
ary conditions for Eqs.~3! and ~4!

] rA~0,t !1] rB~0,t !50, ~A7!

A~0,t !2B~0,t !50. ~A8!
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