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Target patterns arising from the short-wave instability in near-critical regimes
of reaction-diffusion systems
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The supercritical short-wave oscillatory bifurcation is studied in finite systems using the amplitude
(Ginzburg-Landapequation. Numerical simulations show that a zero-flux boundary stabilizes sources of target
patterns. As a result, stable sources attached to the boundary can exist at small overcriticality, under the
condition of convective instability of the homogeneous steady state. Oscillating target patterns and alternating
wave packets are formed if the coupling between left and right propagating waves is strong.
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I. INTRODUCTION can generate traveling and standing waves, modulated
waves, alternating waves on rings, asymmetric standing-
In extended systems, three types of simple instabilities ofraveling wave patterns, and target patterns, as well as fusion
a spatially uniform steady state are responsible for a varietpnd splitting of defect$8].
of patterns which can be classified as follow: oscillatory Target patterns seem to be the most important of the pat-
in time and uniform in spacd?) stationary in time and pe- terns that can be generated by the short-wave instability in
riodic in space, angB) oscillatory in space and tinfd]. For ~ reaction-diffusion systems, because spontaneous desynchro-
reaction-diffusion systems, all three instabilities were studiedization of bulk oscillations in real reaction-diffusion sys-
by Turing [2]. Of these three, the oscillatory instability at €MS usually begins with the emergence of target patterns
finite wave number, i.e., the short-wave instability, is the[g_lll While in ex.perlrr'lents target patterns often arise from
least studied. local mhomog_eneltles_ in system parametgtg-14 (e.g., _
The short-wave instability has been found in binary fluidfrom dust pa_irtlcles or impurities that locally change reaction
convection and in electroconvection in liquid crystal. rates, there is a good deal of evidence that these patterns can

. ) also emerge from fluctuations of the concentrations that are
Recently, standing waves and other spatiotemporal patte”?jsynamic variables of the systefi1,15

connected with this type of instability have been found in The target patterns found in the above models emerge
oscillating heterogeneous reactions when diffusion of the aUzpiher far from the onset of the short-wave instability. To
tocatalyst(activato) is supplemented by a global negative fing general conditions for a generation of target patterns

feedback. Jakubittet al. [3] found standing concentration near the onset, one can analyze the corresponding amplitude,
waves in carbon monoxide oxidation on the surface of a Pte  the complex Ginzburg-Landau, equatidfs E).

monocrystal. These standing waves were obtained in a math-
ematical model that took into account the surface reactions,
surface diffusion of the autocatalyst, and global coupling
through the gas phadd]. Standing waves were observed
during electrochemical dissolution of nicKé&], and various B= eB—a|B|?B—Db|A|?B+vB,+dB,y, (2)
relevant patterns were found during the atmospheric oxida-
tion of hydrogen, propylene, methylamine, and ammonia owhereA is the complex amplitude of the mode traveling to
heated metallic wires and ribborj§]. Middya et al. per-  the right,B is that of the mode traveling to the left, ards
formed systematic simulations with simple models of relax-the overcriticality parameter; is the group velocity, which
ation oscillators supplemented with diffusion and globalis a real number.
negative feedback. They found various types of standing Target pattern formation in coupled complex GLE has
waves, target patterns, and some more complicated patterbsen studied by several authds6—22. However, these
[7]. studies do not consider the effects of boundary conditions,
Recently, a simple reaction-diffusion model has been dewhich are significant in experimental reaction-diffusion sys-
veloped that contains a relatively large domain of the wavaems. Livshitg16] and Coullet and co-workefd7,21] con-
instability. One-dimensional simulations show that the modekidered a spatially infinite system, so that boundary effects
were irrelevant. In the context of reaction-diffusion systems,
their results imply that stable target patterns can only exist

A=eA—alA|?A—b|B[PA—vA+dA,, 1)
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proved. Cross[18-20 performed an extensive computer 1
study of the GLE with real coefficients in finite systems with [
no-slip boundary conditions. While these calculations are
relevant to convection problems, a similar approach to
reaction-diffusion systems normally involves complex GLE
with zero-flux boundary conditions. Therefore, the problem
of whether the short-wave instability can underlie the mecha-
nism of target patterns in reaction-diffusion systems still ex-
ists.

Here we perform a numerical study of the oscillatory Tur-
ing bifurcation in the Ginzburg-Landau approximation with-
out restrictions on the coefficients of the corresponding gen-
eralized GLE. Systems with periodic and zero-flux boundary
conditions are considered. In this approximation, it is these
conditions—the absence of bulk flow and of matter exchange
through the walls—that correspond to specific features of the
original reaction-diffusion systems. We show that, within a
certain range of the mode coupling pgrqmeter, stable station- FIG. 1. A stationary target pattern in a system with periodic
ary soyrceg_of tgrget patterns can exist in the system at S,mzl%undary conditions. The solid line is the stationary envelope of the
overcriticalities if they are attached to zero-flux boundaries s mpjitude of the rightward traveling wave, and the dashed line is
These structures become oscillating when the coupling benat of the wave traveling leftward. The crossover at distand®
tween the left-going and right-going waves increases. Withs a sink and that at23 is a source. Parametets=0.5, 3=0.25,
still stronger coupling, this oscillation may evolve into a re- 5'=0.5, y=4, and5=0.2. The units of both axes are dimension-
gime of alternating wave packets emitted by the oppositgess.
boundaries. In contrast, free-standing sources are only found
at a sufficiently large overcriticality, when the instability of s=0Q(¢/k? D), and in the generic cade,D=0(1). Thus
the uniform steady state is absolute, in agreement with thg=(Q(¢), and we treat it as an overcriticality parameter.
argument of Coullet, Frisch, and Plaizd] for infinite sys- In an infinite, or periodic, system two types of solutions
tems. _ _ _are known: standing wavedf —1<y<1), and traveling

In Sec. Il we discuss GLE for short-wave bifurcation. wayes(if y>1). Since sources of traveling waves are the
Section I1l describes the numerical procedure employed fofocys of the present work, we perform simulations of Egs.

the simulations. Sections IV and V treat the cases of periodig3) and (4) for y>1, outside the domain of the Benjamin-
boundary conditions and zero-flux boundary conditions, reggi, instability[24] (1+ a8’ >0).

spectively. After Sec. VI, the Appendix gives a derivation of
boundary conditions for the GLE corresponding to zero-flux
boundary conditions for the original reaction-diffusion sys-

tem. Since the complex ODE) and (4) represent an ideally
“soft” system (having only one time scalethe stability
requirements for the numerical integration are not very re-
strictive. Therefore, the equations were integrated with the
first order Euler technique. Double precision complex arith-
Here we make Eqs(l) and (2) dimensionless by using Mmetic was used. The time and space discretizations were cho-
scales different from that dfL,16—19. In the generic case Sen such that their further refinement did not improve the
v=0(kD), wherek,, is the wave number of the critical results significantly. The time step was varied within the in-
mode, and is a “characteristic” diffusion coefficient. Both terval 1-5<10~* and the number of spatial grid points var-
Re(d) and Imd)=0O(D) After the rescaling:t—t/e, ied from 400 to 800. Two kinds of initial conditions were
A—[e/Re@)]Y?A, B—[e/Re(@)]¥?B, x—(v/€)x, Egs.(1)  used: (@ A=0.0031+iR;(x)], B=0.091+iR,(x)] for
and(Z) become X<X0, and AZO.].[1+iR1(X)], B:00011+|R2(X)] for
X>Xq, whereR; is a random number normally distributed in

_ the interval (0,1) X, is the initial position of the sourcéb)

A=A—(1+ia)|A?A—y(1+iB)|B|2A— A, A=0.1R;(X)+iR,(x)], B=0.R3(x)+iR4(x)], 0<x
<L. The (b) type initial conditions were only used for sys-
tems of lengthL <10, where no free-standing sources were
found.

(Al |B]

Distance

IIl. NUMERICAL PROCEDURES

II. SCALING GINZBURG-LANDAU EQUATION
FOR THE OSCILLATORY TURING BIFURCATION

+8(1+i6" )AL, 3

B=B—(1+ia)|B|?B— y(1+iB)|A|’B+B,
IV. PERIODIC BOUNDARY CONDITIONS

+8(1+i6")Byy, (4) )
For 6< 6., (6.,=0.2 for our parameteyshe solution al-

ways converges to a homogeneous traveling wave. Station-
where a=Im(a)/Re(@), vy=Re()/Re@), B=Im(b)/ ary target patterns exist i6= 4., and the system is long
Re(), &' =Im(d)/Re(d), and 6=e¢ Re(d)/v2. Note that enough(Fig. 1). Figure 2 shows the domain of target patterns
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FIG. 2. The domain of stationary target patterns in a system FIG. 4. A stationary target pattern in a system with zero-flux
with periodic boundary conditions. Solid line and diamonds: boundary conditions. Parametersyr=0.5, 8=0.25 y=2.0,
6=0.25, dashed line and circle§=0.2. Other parameters are as in §’'=0.5, §=0.2. The units of both axes are dimensionless.

Fig. 1.
flux boundary conditions impose the reflection symmetry
in the y-L plane for the case of a single target pattéan constraint not only on the solutions but on possible perturba-
“source” and a “sink”) present in the system. This figure tions as well. Therefore, solutions in a system with zero-flux
suggests the existence of a critical length above which thboundaries are subject to a narrower class of possible pertur-
system can support free-standing pacemakers. More than obations, in comparison with those in infinite or periodic sys-
stable target pattern can be found in a sufficiently long systems, and their stability domain may expand as a result. For
tem (Fig. 3. this reason, one can anticipate stability of sources attached to
a zero-flux wall even fob<< 8., . Our simulations described
below confirm this conjecture.
V. ZERO-FLUX BOUNDARY CONDITIONS The original zero-flux boundary conditions for the

Zero-flux boundary conditions imply reflection symmetry reaction-diffusion equations result in the following boundary
with respect to the boundary. Stationary sources and sink&onditions for the coupled GLEsee the Appendix
also possess reflection symmetry. Therefore, if a system with
a stationary source and/or sink is cut in two at the point of [axAX D) +xB(X, 1) ]x=0, =0, ®
reflection symmetry and the zero-flux condition is imposed
at the new edge, the new “half” of the system should still

admit the corresponding half of the originally symmetric so- . - . .
lution. Hence, if a source or sink can exist within a system, it As in the case of periodic boundary conditions, stationary

: free-standing sources can be found in a sufficiently long sys-
should also exist at the zero-flux boundary. However, zero- ) . o .
y tem (Fig. 4) for dy= &, . The domain of their existenc€ig.

5) differs insignificantly from that found in the preceding
L section. Even in a long system, a free-standing source can be
stable only far enough from the boundary: otherwise it drifts
and eventually attaches to the boundéfig. 6). For shorter
systems (<15 in our simulationsthe sources and sinks can
only exist if they are attached to the boundaries. Figure 7
illustrates a typical solution when calculations start from spa-
tially asymmetric(e.g., randominitial conditions.

While we have found stationary free-standing sources
only under the conditions of absolute instabiliz &, ,
stable sources at the boundaries can exist for sén@ke., for
small overcriticality and under the condition of convective
instability) if the coupling parametey is in the range 1-1.6,
see Fig. 8. In a short systerh { 10) a target pattern extends
over the entire system, with the source attached to one
60 boundary and the sink attached to the other. In a longer sys-

Distance tem, each boundary may become a source, with the sink
settling in betweeriFig. 9). These results imply that a zero-

FIG. 3. Two stationary target patterns in a longer system withflux boundary, such as a wall or a dust particle, may become
periodic boundary conditions. Parameters are as in Fig. 1. a source even at a very small overcriticality.

[A(X,t) =B(X,t) Jx=0L=0. (6)

(Al |B]
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FIG. 5. The domain of stationary free-standing target patterns in - Fjg. 7. A stable source and a sink attached to the zero-flux

a system with zero-flux boundary conditions is above the solid lineyyq,ndaries. Parameters are as in Fig. 4, except#d.3 andy=4.
The region between the solid and dashed lines is the domain of

stationary sources attached to the boundary. There are no sources ]
below the dashed line. Parameters are as in Fig. 4. the real valued equations. Each of these cases would corre-

spond to some type of degeneracy when taken in the context

When y exceeds a certain thresholg yo~1.7 in our  of reaction-diffusion systems. _ _
case and §< &, , sources at the boundaries become oscilla-  We consider here Eqg¢3) and (4) without these restric-
tory (Figs. 8 and 10 For small§ and large enoughy the  tions. For this reason, to obtain E@) we employ a spatial

solution takes a form of alternating wave packets, see Figscaling different from that used in Refsl,17-21: we use
11. the “convective length”l .=v/e as a scaling parameter in-

stead of the “diffusion length’l y7=[ Re(d)/]*. While both
V1. DISCUSSION scales are_of the same order of magn_lt_ude in the al_)ove re_f-
erences, since vanishing group velocities are considered in

As mentioned, Eq¥3) and(4) have been considered in a the context of the fluid convection problem O(e'?), only
number of workd16—22. However, in Ref[16] the diffu-  the “convective length” is justified at finite group velocities,
sion term was completely neglected, while in R¢fs7—22  which is the generic case in reaction-diffusion systems.
it was taken to be of the same order of magnitude as the Solutions that correspond to one-dimensional target pat-
other terms. Moreover, in the fluid dynamics context, theterns are of special interest here. We have shown that a zero-

numerical simulations in Ref18-2( were performed with  flux boundary may be a source of target patterns at very
small overcriticality. While it was previously thought that an

inhomogeneity may become a nucleus of a target pattern if it
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FIG. 6. Drift of a source toward a boundary when its initial Overcriticality, §

distance from the boundary is 1/5 of the system length. Sources

located at a distance L/3 from the boundaries remain stable in this ~ FIG. 8. The domains of stationary, oscillating, and alternating
case. The gray levels represent the valugof- |B|, with the dark  sources attached to the boundary. The area between the dashed and
corresponding to a low value, and the light to a high value. Paramelotted lines is a domain of complex alternating patterns. Parameters
eters are as in Fig. 4 except fbr=50. are as in Fig. 4L=10.
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Distance

Time

Distance FIG. 11. Alternating wave packets in a system with zero-flux
boundaries. The gray levels represent the valué\pf|B, i.e., the
i ) amplitudes of the waves traveling to the right and to the left, with
FIG. 9. Stationary sources attached to zero-flu,x boundaries fO{he dark corresponding to a low value, and the light to a high value.
0<0c . Parametersia=05, $=0.25, y=1.3, §'=0.5, and |, qqe calculations when one of the amplitudes was high, the other
6=0.05. was near zero. Parameters are as in Fig. 4, excepb+dd.005,
v=10, andL=10.
appropriately changes the local kinetic parameters of the sys-
tem[12-14, our work shows that “neutral” walls or dust APPENDIX
particles may also be pacemakers in the case of the oscilla- 1¢ gptain the boundary conditions for the complex ampli-
tory Turing bifurcation in a reaction-diffusion system. tudesA andB one has to recall how these amplitude relate to

the solutions of the original reaction-diffusion system. Con-
sider the reaction-diffusion system
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x=Ax+ DAX, (A2)
Distance

where x=X—X,, f(Xg)=0, and Ay= (0f/<9x)x=x0 is the
Jacobian matrix. We also assume that there is a critical wave
numberk,,, such that forx=xkcrexp6kcrr) there is a pair,

2 N1 ,=*iw, oOf purely imaginary eigenvalues of the matrix
(= A=A,—kZ D, while fork#k,, all the real parts of eigenval-
ues are negative. Then the inhomogeneous solution is sought
in the form
k4 x=A(r,t)exdi(wt—Kker)JU+B(r,t)
Xexgi(wt+ker)JU+A(T,1)
X exg —i(wt—Kkg)JU+B(r,t)
Xexd —i(wt+ker)]U, (A3)
where U is the right eigenvector oA corresponding to
N=iw, andA(r,t) andB(r,t) are the slowly varying ampli-
tudes described by Eqg&3) and(4). The zero-flux boundary
condition (@x/dr),-o=0 then reduces to
JA(Ot dB(0t
FIG. 10. An oscillating source in a system with zero-flux bound- 0= (09 — ik AO) + 0y +ike,B(0})
aries. The gray level represent the valug Af, i.e., the amplitude ar ar
of the wave traveling to the right, with the dark corresponding to a &A_(O 0
low value, and the light to a high value. Parameters are as in Fig. 4, > : n AT
except for6=0.1 andL=10. expliohV ar tkerACOD)
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JB(0}) €Y1 9.A0)+9,B(0t)]—ike,[A(O)—B(0t)]=0,

+ +ikeB(O}) |lexp —iwt)U, (Ad) (A6)

or

which, after multiplying from the left by the left eigenvector where £= €% . The requirement that the terms of different

U", becomes order ine should balance separately finally yields the bound-

IA(O1) +aB(0,t) ary conditions for Eqs(3) and (4)

—iko,[A(O)—B(01)]=0. (A5)

or or
d,A(0t)+4,B(0}t)=0, (A7)
The fact thatA(r,t) andB(r,t) are slowly varying functions
of the spatial variable can be expressedfasA(e'r t),
B=B(e'%,t). Then Eq.(A5) turns into A(0t)—B(0t)=0. (A8)
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